Hallo

Author

Qian Zhou

Published

July 23, 2025

Figure 1 illustrates different things. Figure 1 (a) illustrates this, Figure 1 (b) illustrates that and so on

library(ggplot2)
ggplot(mtcars,
       aes(mpg, hp, size = gear)) +
  geom_point()

ggplot(mtcars,
       aes(mpg, hp, size = gear)) +
  geom_point() + 
  geom_smooth()

ggplot(mtcars,
       aes(mpg, hp, size = gear)) +
  geom_point() + 
  geom_smooth(method = "lm")
ggplot(mtcars,
       aes(mpg, hp, size = gear)) +
  geom_point() + 
  geom_smooth(method = "glm", method.args = list(family = "poisson"))
(a) The data
(b) Polynomial
(c) Linear Model
(d) GLM with Poisson
Figure 1: One dataset, different models
ggplot(mtcars, 
       aes(hp, mpg, color = factor(am))) +
  geom_point() +
  geom_smooth(formula = y ~ x, method = "loess") +
  theme(legend.position = 'bottom')
datatable(mtcars,
  options = list(pageLength = 5))

library(kableExtra)
kable(head(cars))
kable(head(pressure))
Table 1: Datasets
(a) Cars
speed dist
4 2
4 10
7 4
7 22
8 16
9 10
(b) Pressure
temperature pressure
0 0.0002
20 0.0012
40 0.0060
60 0.0300
80 0.0900
100 0.2700
data =read.csv('data/dataset.csv')

head = data

class(data)
[1] "data.frame"
x = data$anxiety
y= data$flexibility
plot(x, y)

summary(data)
    anxiety        flexibility    mindfulness          activity        
 Min.   : 1.483   Min.   :26.91   Length:300         Length:300        
 1st Qu.:25.977   1st Qu.:44.24   Class :character   Class :character  
 Median :33.922   Median :49.56   Mode  :character   Mode  :character  
 Mean   :33.418   Mean   :50.34                                        
 3rd Qu.:41.974   3rd Qu.:56.32                                        
 Max.   :64.775   Max.   :82.41                                        
sum(is.na(data))
[1] 0

Figure 2 illustrates a plot

knitr::include_graphics("images/table.png")
Figure 2: Fig. motor transfer between expert and nonathlets

Table 2 illustrates a table

```{r}
#| label: tbl-motor 
#| tbl-cap: "Iris Data"
library(kableExtra)
kable(mtcars) %>%
  scroll_box(height = "450px", width = "100%")
```
Table 2: Iris Data
mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
Listing 1: Basic use of the plot() function
plot(cars)

Listing 1 illustrates a basic use of the function plot()

Equation 1 illustrates how to standardize a value \[ z = \frac{x_i - \bar{x}}{s} \tag{1}\]

library(ggplot2)
#| out-width: 80%                                
#| fig-align: right                            
#| fig-cap: A graph from `mtcars`
#| fig-cap-location: bottom
#| label: fig-mtcars1
ggplot(mtcars, aes(hp, mpg, color = factor(am))) +
  geom_point() +
  geom_smooth(formula = y ~ x, method = "loess") +
  theme(legend.position = 'bottom')

ggplot2 is an R (R Core Team 2025) package developed by (Wickham 2016). Epifania, Anselmi, and Robusto (2024) published an interesting paper on Linear Mixed Effects Models.

R Core Team. 2025. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
Wickham, Hadley. 2016. Ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. https://ggplot2.tidyverse.org.
Epifania, Ottavia M, Pasquale Anselmi, and Egidio Robusto. 2024. “A Guided Tutorial on Linear Mixed-Effects Models for the Analysis of Accuracies and Response Times in Experiments with Fully Crossed Design.” Psychological Methods. https://doi.org/https://doi.org/10.1037/met0000708.

I want this picture displayed in the margin

eeg!

fnirs!

the nature of neuroplacity in human

behavior, fnirs, eeg, tdcs

the brain support the motor learning

First level

I miss you.

Second level

I miss you.

Third level

i DO MISS you

Fourth level

I do do do do miss you

Hahahahaha

Frankly2 speaking, i do not miss you

My researchgate is here

welcome to the phd

This is science.

this is his image
Note

To say something general

I’m a title!

Maybe a tip :)

Pay attention!

Please pay attention to whatever it is written here

Warning

Just saying you should be careful

5*5
[1] 25
5^2
[1] 25
#|echo: true
1mtcars %>%
2  ggplot( aes(mpg, hp, size = gear)) +
3  geom_point() +
4  geom_smooth(method = "lm")
1
This does that
2
This other thing is this
3
And look at this!
4
Please have mercy